A Novel Endoscopic Ultrasound-Guided Extended-Release siRNA Implant Targeting KRAS G12D/V in Localized Pancreatic Cancer

FPN: **1626P** Anna M. Varghese MD¹, Talia Golan MD², Mark Schattner MD¹, Celina Ang MD³, Martin Gutierrez MD⁴, Moshe Kamar MD⁵, Maria Passhak MD⁶, Ravit Geva MD⁷, Nirit Yarom MD⁸, Maor Lahav MD², Rosario Ligresti MD⁴, Iyad Khamaysi MD⁶, Manoop S. Bhutani MD⁹, Adam Phillips MD⁷, Shay Matalon MD⁸, Orit Pollack-Shragai MSc¹⁰, Dror Rom PhD¹¹, Mitchell Shirvan PhD¹⁰, Milind M. Javle MD⁹, Eileen M. O'Reilly MD¹

¹Memorial Sloan Kettering Cancer Center, New York, NY; ²Sheba Medical Center, Ramat Gan, Tel Aviv, Israel; ³Mount Sinai Hospital, New York, NY; ⁴Hackensack University Medical Center, Hackensack, NJ; ⁵Medicine, Wolfson Hospital, Holon, Israel; ⁶Rambam Health Care Campus, Haifa, Israel; ⁷Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel; ⁸Shamir Medical Center, Beer Yaacov, Israel; ⁹MD Anderson Cancer Center, Houston, TX; ¹⁰Silexion Therapeutics, Modiin, Israel; ¹¹Prosoft Clinical, Chesterbrook, PA

Background: Locally advanced pancreatic cancer (LAPC) accounts for 30% of pancreatic cancer (PC). LAPC incurs high mortality. We evaluated a novel extended-release siRNA targeting KRAS G12D/V (G12D/V) mutations (Loder™) in combination with standard chemotherapy.

Methods A two-cohort, Phase 2 multicenter, open-label trial was conducted. Cohort 1: Patients (pts) with LAPC randomized to: Loder[™] +gemcitabine/nabpaclitaxel (GnP); or GnP. Cohort 2: pts with Borderline Resectable (BR) PC or LAPC single arm, Loder[™] +(modified)FOLFIRINOX ((m)FFX) or GnP. The Loder[™] was inserted into primary tumor via endoscopic ultrasound (EUS 19G needle) q3 mo. for 2-3doses. mITT, all patients > 1 treatment. Key study endpoints: overall survival (OS), safety.

Results N= 49 pts in mITT (6 BRPC, 43 LAPC, Loder[™] n=38, control n=11). *KRAS* G12x status known for n=31: G12V, n=16; G12D, n=7; G12R, n=8. For mITT: no difference in OS for Loder[™] + chemo vs. chemo (OS=22.1 vs. 22.1 mo.). However, in pts with G12D/V a non-statistically significant numerical advantage was seen in Loder + (m)FFX or GnP arm (n=18, Cohorts 1,2) median OS = 21.1 mo. vs. 13.8 mo. Loder[™] treatment was well tolerated. Safety events were primarily related to procedure; mainly reversible abdominal pain. Four Grade 5 events(visceral arterial ischemia, sepsis; 2 progression of disease) assessed as unrelated

Conclusions Loder with chemotherapy is feasible, safe, and shows a promising signal in KRAS G12D/V BR, LAPC. Further evaluation is warranted. **Clinical trial identification** NCT01676259

BACKGROUND

- The majority of PCs (~90%) harbor KRAS mutations; with ~75% KRAS G12D and G12V (KRAS G12D/V)
- Small interfering RNA (siRNA) can target KRAS G12D mutations (~40% PC) to prevent the production of this oncogenic protein, using an extended release depot formulation administered intra-tumorally (Loder™)¹
- Phase 1 trial in combination of Loder[™] and standard of care chemotherapy (SOC) in localized non-resectable-PC demonstrated the Loder[™] to be safe²
- In the current study we tested Loder[™] with SOC chemotherapy, in a Phase 2 trial with overall survival (OS) being a key study endpoint.

STUDY DESIGN

2 part, open-label, multinational study which included:

- Cohort 1: Pts LAPC randomized to Loder[™] + gemcitabine/nab-paclitaxel (GnP) (treatment arm); or to GnP (control arm)
- Cohort 2: Pts with Borderline Resectable (BR) PC or LAPC in a single treatment arm, Loder[™] + (modified) FOLFIRINOX ((m)FFX) or GnP. After completion of Cohort 1, Cohort 2 was enrolled
- For both cohorts, pts enrolled to the study without identifying if their tumor had a *KRAS* mutation. The ECOG (Eastern Cooperative Oncology Performance Status) ≤ 1
- The Loder[™] was administered by insertion into the primary tumor via endoscopic ultrasound (EUS 19G needle) for 2-3 doses, once every 3 months

KRAS MUTATION FREQUENCY

KRAS was determined for n=31 pts, 21 treated with Loder™

KRAS G12x Mutation	Cohort 1 Arm 2 (Control)	Cohort 1 Arm 1 (Treatment)	Cohort 1 % Arm 1 Tx	Cohort 2 (Treatment)	All Treated %
R	5/10	1/12	8	2/9	26 (8/31)
D	2/10	3/12	25	2/9	23 (7/31)
V	3/10	8/12	67	5/9	52 (16/31)

- mITT : all pts receiving \geq 1 treatments
- safety
- Exploratory sub-analyses:
 - comparing treatment to control
 - Cohort 1

STUDY SCHEMA

PATIENT DEMOGRAPHICS

Total		Cohort 1			
		Treatment	Control		
	Male: 25	Male: 7	Male: 7		
Female: 24		Female: 11	Female: 4		
a Native	1	1	0		
Asian	2	1	0		
merican	1	0	0		
Other	1	1	0		
White	41	14	9		
Inknown	3	1	2		
nge)	70 (50-85)	71.5 (54-82)	75 (61-85)		

STUDY ENDPOINTS

• Key study endpoints: OS, response rate (RR, RECIST v1.1),

• All pts in randomized Cohort 1 with KRAS G12D/V mutation,

• Treatment arm Cohort 1+Cohort 2, compared to control arm of

EFFICACY RESULTS

Cohort/Arm	Median OS (mo.)	Hazard Ratio (95% CI) p value
All Pts, mITT n=49		
Arm 1, Cohort 1+Cohort 2: Loder™+GnP/(m)FFX, n=38	22.1	1.6
Arm 2, Cohort1: GnP, n=11	22.1	(0.7-3.5) NS

All KRAS G12D/V mutations, (Treatment from Cohorts (1+2) vs. **Control from Cohort 1) (Exploratory sub-analysis)** LAPC (n=21), BRPC (n=2)

Arm 1,Cohort 1+Cohort 2:	21.1	0.62
Loder™+GnP/(m)FFX, n=18	40.0	(0.2,1.9)
Arm Z: GNP, N=5	13.8	NS

Randomized Cohort 1, LAPC pts bearing only G12D/V mutations (Exploratory sub-analysis)

Arm 1: Loder™+GnP, n=11	22.8	0.59
Arm 2: GnP, n=5	13.8	(0.18,2) NS

p value NS = Not significant

Number of subjects with Loder[™] cycles:

#Cycles	Cohort 1 # subjects	Cohort 2 # of subjects
1	5	6
2	4	6
3	3	8
4	1	0
5	5	0
Total	18	20
Mean	2.83	2.1

SAFETY and ADVERSE EVENTS

- Loder treatment was well tolerated.
- Safety events were primarily related to procedure
 - mainly reversible abdominal pain
- Two unrelated Grade 5 events
 - visceral arterial ischemia
 - sepsis

- Intratumor administration of extended-release siRNA via EUS is feasible and safe
- For allcomers independent of KRAS allele type, no difference in median OS between LoderTM + chemotherapy vs. chemotherapy was observed
- Among patients with *KRAS* G12D/V, chemotherapy and siRNA-LODER showed promise
- Further investigation of siRNA and chemotherapy in **localized PDAC is warranted**

REFERENCES

¹ Golan et al, *Oncotarget* 6: 24560. 2015

² Zorde Khvalevsky et al, *PNAS* 110: 20723. 2013

Contact information

Anna M. Varghese MD: varghesa@mskcc.org @AnnaVarghese4 Eileen M. O'Reilly MD: oreillye@mskcc.org, @EileenMOReilly